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A MULTIGRID METHOD FOR PREDICTING 
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S U M M A R Y  

The use of multigrid methods in complex fluid flow problems is still under development. In this 
paper a full multigrid procedure has been incorporated in a finite volume solution for predicting fully 
developed fluid flow in a streamwise periodic geometry. Steady computations in two-dimensional 
body-fitted co-ordinates have shown considerable savings in computation time by this multigrid 
method. 
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1. INTRODUCTION 

Fluid flow and heat transfer in streamwise periodic geometries such as channels with built-in 
bundles of tubes, grooved channels or ribbed channels are extensively used in industry. Their 
corresponding study is an area of increasing importance in both experimental and numerical 
contexts. 

The workload for numerical prediction of the flow field and heat transfer in such a geometry 
can be tremendously reduced if the flow is modelled to be periodically fully developed. This 
allows the flow field to be decomposed into elements with identical (often in some non- 
dimensional sense) flow structure. One can choose one element with periodic boundary 
conditions as the computational domain for the flow simulation. However, because of the 
inherent iterative nature of the computational scheme caused by the unknown inlet or exit 
condition, the computations may become prohibitively time-consuming, especially for solutions 
with fine grids. 

The multigrid method is an iterative procedure which ideally exhibits a grid-independent 
convergence rate. The potential of this method has been demonstrated in the solution of various 
problems, both linear and non-linear.' However, to our knowledge, the multigrid method has 
not yet been applied to periodic flow problems. 

The aim of this paper is to design and test a multigrid procedure for a periodic flow problem. 
The flow is described by the full Navier-Stokes equations. 

We describe a full approximation scheme-full multigrid (FAS-FMG) cycling algorithm 
applied to a finite volume discretization on a collocated grid. The special treatment for the 
periodicity condition is also given. The SIMPLEC2 pressure correction scheme is used as 
smoother for the Navier-Stokes equations. Finally, results for fully developed fluid flow over 
periodically ordered cyclindrical obstables placed between two parallel plates (Figure 1) are 
presented to demonstrate the effect of the multigrid method. 
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2. MATHEMATICAL MODEL 

2.1. Basic equations 

Figure 1 shows the schematic diagram of a two-dimensional channel with periodically built-in 
cylindrical obstacles. This geometry can be seen as an idealization of the plate-tube heat 
exchanger. Since the flow is assumed to be periodically fully developed, computation in only 
one element, shown by the dashed line in Figure 1, is sufficient to present the flow field. 

Furthermore, because of the steady state situation, we can use only symmetrical half-region 
for calculation (Figure 2). For the purpose of applying the periodic boundary conditions, the 
computational region ‘acfh’ is extended by a small region ‘cdef‘ (Figure 2). The actual solution 
domain is thus ‘adeh.’.3 

The Navier-Stokes equations for steady, two-dimensional, incompressible, laminar flow in 
body-fitted co-ordinates using Cartesian velocity components are written in the following form: 

ul-component 
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Figure 1 .  Schematic of the plate-bube arrangement. 
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Figure 2. Schematic of the solution domain. 



PREDICTION OF PERIODICALLY FULLY DEVELOPED FLOW 845 

u2-component 

continuity equation 

a ui c -=o,  
i =  1 . 2  dxi 

(3) 

where 

2.2. Boundary conditions 

wall and the tube wall give 
The following boundary conditions for one module are used. No-slip conditions on the top 

u1 = u 2  = 0. 

On the symmetry line the gradients of the velocities are set equal to zero: 

V U ,  = vu2 = 0. 

Periodic conditions at the inlet and outlet give 

U A O ,  Y 2 )  = u,(J!+ Y 2 ) >  u 2 0  Y 2 )  = U 2 G  Y 2 ) -  

3. NUMERICAL METHODS AND COMPUTATIONAL DETAILS 

The basic equations are solved by a SIMPLEC-based finite volume technique on collocated 
grids in body-fitted co-ordinates. 

3. I .  Discretization 

The equations are discretized by employing a finite volume approach. The flow domain is 
subdivided into a finite number of continuous control volumes (CVs). The computational nodes 
are placed at the centre of each CV. All the dependent variables are defined at the centre point 
P. Figure 3 shows a typical control volume with labels. 

Since the main emphasis here is on the effectiveness of the multigrid method rather than on 
the accuracy of the solution, upwind differences for convection terms are used. The viscous terms 
are discretized by central differences. The resulting finite volume discretization for the momentum 
equations can be written as 

where nb = E, W ,  N, S, or in matrix form as 
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Figure 3. Two-dimensional control volume and the labelling scheme. 

The coefficients A,, contain the combined effect of convection and diffusion. Their detailed 
expressions can be found in Reference 4. 

3.2. Pressure correction method 

The velocity and pressure fields are interactively calculated with the SIMPLEC algorithm. In 
the collocated grid the velocities at the CV faces are to be calculated from the adjacent 
CV-centred quantities. In order to avoid oscillation, a special interpolation4 is employed. 

The CV-centred velocity up from the discretized u 1  -momentum equation using the relaxation 
factor a,, is 

where 

Df = -b:/Ap. (7) 
Here the pressure difference terms have been taken out of the term ScAV The relation for velocity 
is necessary. 

Similar to the basic concept of staggering, the interpolations for the velocities at the CV faces, 
e.g. at the ‘e’-faces, are given by 

The overbars represent the linear interpolations to the ‘e’-faces. According to the SIMPLEC 
algorithm, the velocity corrections at the CV ‘e’-faces are related to the pressure corrections as 
follows : 
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The formulae for the u,-component are similar. The details of these derivations can be found 

(10) 

in Reference 4. The continuity equation in discrete form gives 

F ,  + F ,  + F ,  + F ,  = 0. 

With 

F ,  = FT + F, 
and 

one obtains 

From these equations we get the pressure correction equation, which is expressed in the form 

where nb = E, W, N, S .  
The strongly implicit procedure (SIP) of Stone’ is used here to solve the equations for u l ,  u2 

and the pressure correction. Within each SIMPLEC procedure only one iteration is performed 
for the momentum equations (4), while the pressure correction equation (12) is iterated until the 
residual norm is reduced by a factor of or a maximum of 10 iterations is reached. 

When all three normalized residual norms are reduced below convergence is assumed. 

3.3. Implementation of periodic velocity boundary condition 

As mentioned before, in the present study the solution domain is larger than one module by 
a small region. For the coarsest grid two volumes in the direction of the main flow are included 
in this region, while for a fine grid the number of volumes equals 2”, where superscript n denotes 
the level of the grids. To start the iteration, a uniform velocity is assumed. The velocities at the 
inflow and outflow boundaries are treated as known. After one cycle of iteration, which includes 
a SIMPLEC procedure as defined before for the single-grid method and as defined in Section 
3.5 for the multigrid method, the periodic boundary conditions are imposed by replacing the 
velocities on line ‘ah’ with the computed values on ‘cf‘ and by replacing the velocities on line 
‘de’ with the computed values on line ‘bg’. This procedure is repeated until periodicity is attained. 
The details for the multigrid method are given in Section 3.5. To satisfy the mass balance, after 
each replacement the velocities at  the inlet boundary and outlet boundary are redetermined by 
multiplying them respectively by a factor which is the ratio of the desired average velocity to 
the current average one. 

3.4. Grid generation 

The differential grid generation method6 is used. This method, which allows us to control 
angles and distances of grid lines near a boundary, is applied to determine the source terms in 
the Poisson equations.’ 

The multigrid procedure first generates the finest grid. Four fine grid CVs are joined into one 
coarser grid CV, which is then defined by the four vertices of the fine grids. Figure 4 shows the 
four grids of the test problem. 
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Figure 4. Four-level grids represented in one picute. 

3.5. Multigrid method 

sweeps with the SIMPLEC algorithm on the fine grid, from equation (5) we obtain 
The full approximation scheme (FAS)’ is adopted in this paper. By applying several smoothing 

S - A 0  = R. (13) 

(14) 

For the exact solution the residuum R reduces to zero, i.e. 

s - A 6  = 0. 

Subtracting equation (13) from equation (14) and transferring this equation to the coarse grid 
H, the FAS coarse grid equation becomes 

(15) 
where I:, need not be the same for different variables. The ‘tilde’ on variables represents the 
current approximate solution on the finer grid h, while the ‘hat’ variables denotes the variables 
which are being modified in the course of iteration on the coarser grid H. 

The approximate coarse grid correction is of course cbH - IF&h, so the FAS interpolation 
back to the fine grid is 

AH&’ = SH - If;’Sh + AHIF&’ + ZFW’, 

= a):,, + I : , ( 6 H  - I,”&h), (16) 
where I:, and I f ; ’  denote bilinear interpolation for prolongation and restriction respectively. 

Since a collocated grid is imployed, the residuals of the coarse grids can be restricted by 
summing the residuals of the four related fine grid CVs. For consistency reasons the source term 
Itsh is determined by the restricted If;’&h, so that when Bh equals zero, the coarse grid equation 
(15) becomes an identity.8 

For the linear pressure operator only the correction on the coarse grid is necessary for the 
fine grid pressure. The correction is obtained through the pressure correction equation. 

The full multigrid (FMG) algorithm is employed. Figure 5 shows the FMG cycle applied to 
periodic flow. The numbers in circles indicate the iteration sweeps which are performed on each 
grid level. The numbers in squares denote the grid levels where an accurate solution will be 
attained. On the finest grid two iteration sweeps are first performed, followed by two iteration 
sweeps for smoothing. After each of the smoothing iterations the maximum absolute difference 
between the velocities on lines ‘cf‘ and ‘ah’ and between the velocities on lines ‘bg’ and ‘de’ 
(Figure 2) is computed. If this maximum is not smaller than a desired value (0.5% of the mean 
velocity in this study), the periodic boundary conditions are imposed by replacing the corre- 
sponding velocities as explained before. Otherwise the replacement is not performed. 
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Figure 5. Full Multigrid scheme. 

4. RESULTS AND DISCUSSION 

For the test problem the geometry parameters are taken as HID = 2 and LID = 3. The 
computations are done for Re = 50 and 100. When the Reynolds number is not larger than 
100, the flow remains steady.' It is therefore reasonable to choose the half-region as solution 
domain (Figure 2). 

The streamlines and velocity vectors predicted on the finest grid for the flow state at Re = 100 
are presented in Figure 6. 

From these pictures we can see that the periodicity of the flow is well realized. 

(b) 

Figure 6. (a) Computed streamlines, (b) velocity vectors; H/D = 2, L/D = 3, Re = 100. 
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Table 1. Computation times and iteration numbers for single-grid (SG) and multigrid (MG) schemes 

Computation time (CPU seconds) Number of iterations 

cvs 26 x 7 52 x 14 104 x 28 208 x 56 26 x 7 52 x 14 104 x 28 208 x 56 

Re = 50, u, = O.S(O.9 for  SG) 

SG 7.43 90.97 1508.64 45 130 450 
MG 1.32 5.57 36.7 1 187.7 1 40 29 39 39 
MG/SG 72 % 40 ?'a 12% 

Re = 100, a, = 0?7(0.9 for  SG) 

SG 8.67 84.77 1368.73 57 128 423 
MG 1.47 8.52 58.04 260.92 45 51 55 51 
MG/SG 98 Yo 68% 19% 

Table I lists the computation times and iteration numbers for the multigrid and single-grid 
methods. For the multigrid method the iteration number is that performed on the finest grid. 
A comparison of the computation times between single-grid and multigrid methods is also given 
in Table I. The calculations were performed on a Cyber 992 computer. 

For the coarser grids the savings by multigrid are not large, and with an increase in grid 
number (from grid 1 to grid 2, from grid 2 to grid 3) the increase in the computation time is 
faster than linear, i.e. the grid-independent convergence rate has not been attained. One of the 
reasons for this is the influence of the extra iterations resulting from the periodic conditions. 
For the finer grids the behavior of the multigid method has been well demonstrated. From grid 
3 to grid 4 the convergence rate of multigrid is almost independent of the number of control 
volumes, and the computation time increases approximately linearly. In contrast, the computa- 
tion time of single-grid increases quadratically, i.e. the influence of the periodic conditions on 
the calculation feature becomes small. For finest grid of this study (208 x 56 DVs) the savings 
in computation time by the multigrid method are 88% and 81% for Re = 50 and 100 respectively. 
The saving in computation time will increase if an even finer grid is adopted. One notices that 
the relative efficiency of the multigrid method decreases as the Reynolds number increases. One 
reason for this is that with increasing Reynolds number the effect of the SIMPLE-type method 
as smoother for the multigrid method decreases." Another reason for the smaller saving at high 
Reynolds number is that the base method converge increasingly faster. 

5. CONCLUSIONS 

The FAS-FMG method has been successfully applied to predict periodically fully developed 
flow. Computations for two-dimensional, steady, incompressible fluid flow in body-fitted 
co-ordinates have shown that approximately grid-independent convergence can be attained with 
a fine grid, and that considerable savings in computation time can be achieved by the multigrid 
method. 
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APPENDIX: NOMENCLATURE 

coefficients of fine volume equation 
matrix form of coefficients 
projection area of control volume 
cyclinder diameter 
pressure coefficient (equation (7)) 
mass flow 
width of channel 
some fine-to-coarse transfer, defined in text 
bilinear interpolation from coarse grid to fine grid 
Jacobian of co-ordinate transformation yi = y(xi) 
pressure 
source term, S = Sc + S p 4 ,  
matrix form of source term 
constant part of linearized source terms 
coefficient of 4, in linearized source term 
mass imbalance (equation (1 1)) 
residuum in matrix form 
Reynolds number, Re = pumH/p 
average velocity 
velocity components in yl- and y2-directions 
arbitrary co-ordinates 
Cartesian co-ordinates 

Greek letters 

underrelaxation factor for velocity components u1 and u2 
cofactor of aylax in J 

5 
A V  control volume 
c1 dynamic viscosity 
P density 
4 
a) 

variable representing u l ,  u2 or p' 
matrix form of arbitrary variable 

Superscripts 

h fine grid 
H coarse grid 
i , j ,  k 
0 value of last iteration 

convariant component of a vector or tensor 

uncorrected value 
correction 

* 

Subscripts 

e, n, s, w control faces (Figure 2) 
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grid points (Figure 2) 
fine grid 
coarse grid 
convariant component of a vector or tensor 
neighbouring grid points 
values associated with control volume vertices 
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